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ABSTRACT

Deep neural networks on 3D point cloud data have been widely used in the real
world, especially in safety-critical applications. However, their robustness against
corruptions is less studied. In this paper, we present ModelNet40-C, the first com-
prehensive benchmark on 3D point cloud corruption robustness, consisting of 15
common and realistic corruptions. Our evaluation shows a significant gap be-
tween the performances on ModelNet40 and ModelNet40-C for state-of-the-art
(SOTA) models. We also demonstrate the effectiveness of different data augmen-
tation strategies in enhancing robustness for different corruption types. We hope
our in-depth analysis will motivate the development of robust training strategies
or architecture designs in the 3D point cloud domain. Our codebase and dataset
are included in https://github.com/jiachens/ModelNet40-C.

1 INTRODUCTION

Point clouds are one of the most acknowledged data format in 3D computer vision tasks, as they are
inherently flexible representations and can be retrieved from a variety of sensors and computer-aided
design (CAD) models. Because of these strengths, point clouds have been increasingly utilized in
real-world applications.

As opposed to stellar progress on model architectures in 2D computer vision, deep 3D point cloud
recognition is emerging where various architectures and operations are being proposed. Classic
approaches discretize the point cloud into 3D cells, which causes cubic complexity. PointNet (Q1
et al., |2017a)) innovates to achieve end-to-end learning on point clouds. A few studies optimize the
convolutional operation to be preferable for 3D point cloud learning (Wang et al., |2019; [Liu et al.,
2019b). Transformer (Vaswani et al., [2017) blocks are also applied as backbones in point cloud
recognition (Guo et al., 2021). The most extensively utilized benchmark for comparing methods of
point cloud recognition is ModelNet40 (Wu et al.l [2015). Although the accuracy on ModelNet40
over the past several years has been steadily improved, it merely shows a single perspective of
model performance on the clean data. Given the importance of 3D point cloud in the safety-critical
application, a comprehensive robustness benchmark for point cloud recognition models is necessary.

In the literature, the vast majority of research on robustness in 3D point cloud recognition has con-
centrated on the critical difficulties of robustness against adversarial examples. Adversarial training
has been adapted to defend against various threats to point cloud learning (Sun et al., | 2020bj 2021a).
However, we find that the inevitable sensor inaccuracy and physical constraints will result in a num-
ber of common corruption on point cloud data. For example, occlusion is a typical corruption for
scanning devices, rendering partially visible point clouds. Deformation is also ubiquitous in AR/VR
games. Such corruptions pose a even bigger threat in most real-world application scenarios. Thus,
it is imperative to study the corruption robustness of 3D point cloud recognition.

Summary of Our Contributions:

In this paper, we create, to our knowledge, the first systematic corruption robustness benchmark,
ModelNet40-C, for 3D point cloud recognition and present an in-depth analysis. To construct the
dataset, we meticulously design and formulate 75 corruptions (15 types with 5 severity levels) that
cover the majority of real-world point cloud distortion cases. We further provide a taxonomy of
these corruptions into three categories (i.e, density, noise and transformation) and discuss their ap-
plication scenarios. We anticipate that ModelNet40-C will serve as a first step towards 3D point
cloud corruption-resistant models.

We conduct extensive evaluation on our ModelNet40-C. Specifically, we compare 9 representative
models including PointNet (Q1 et al.,|2017a)), PointNet++ (Q1 et al.| 2017b), DGCNN (Wang et al.,
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Figure 1: Visualizations of Our Constructed ModelNet40-C. Our ModelNet40-C dataset consists
of 15 corruption types that represent different out-of-distribution shifts in real-world applications
of point clouds. Similar to ImageNet-C (Hendrycks & Dietterichl [2019)), each corruption type has
5 severity levels. We carefully examine the generated point clouds and ensure they preserve their
original semantics. More visualization samples are shown in Appendix [A]

2019), RSCNN (Liu et al.l [2019b), PCT (Guo et al., 2021), SimpleView (Goyal et al.| [2021)), Cur-
veNet (Xiang et al., [2021), GDANet (Xu et al.| [2021), and PointMLP (Ma et al.| [2022). We find
that current models are vulnerable to our created corruptions and there are nearly 3 error rate
gaps between model performances on ModelNet40 and ModelNet40-C. Our results reveal that there
is still considerable room for point cloud recognition models to improve on robustness against
common corruptions. We also leverage data augmentation (or regularization) strategies including
PointCutMix-R, PointCutMix-K (Zhang et al.,[2021), PointMixup (Chen et al., 2020), RSMix (Lee
et al., 2021)), and adversarial training (Sun et al., |2021a) to show their potential in improving cor-
ruption robustness on our ModelNet40-C.

2 3D PoOINT CLOUD CORRUPTION ROBUSTNESS

In this section, we introduce the design principles of our 3D corruption benchmark. Extensive
studies have been carried out to improve both architectures and training strategies for point cloud
recognition on in-distribution data (Q1 et al.,[2017a; Wang et al.,|2019;|Chen et al.| 2020; Lee et al.,
2021). However, there has not been any systematic study on the model robustness against common
corruption. To bridge this gap, we design 15 common corruptions for benchmarking corruption
robustness of point cloud recognition models. It is worth noting that such designs are non-trivial
since the manipulation space of 3D point clouds is completely different from 2D images where the
corruptions come from the RGB modification (Hendrycks & Dietterichl [2019). In particular, we
have three principles to design our benchmarks: i) Since we directly manipulate the position of
points, we need to take extra care to preserve the original semantics of point clouds (Fig. [T). ii) we
should ensure the constructed corruptions are realistic in various applications. iii) We should take
diversity as an important factor to emulate a wide range of natural corruptions for 3D point clouds.

Our 15 corruption types can be naturally grouped into three categories (i.e., density, noise, and
transformation) , and we will introduce them in the following subsections.

2.1 DENSITY CORRUPTION PATTERNS

Test-time point clouds may have different density patterns from the training samples due to sensor
capability and physical constraints. For example, VR scanning (in indoor scenes) and LiDAR sen-
sors may suffer from occlusion, so that only a portion of the point cloud is visible (Geiger et al.,2012;
Dai et al.,[2017). Besides, the direct reflection of lasers on metal materials will cause local missing
points in LiDAR point clouds (Liu et al.| 2018)). The local density of 3D scanned point clouds rely on
how frequently the device passes that area (Nguyen & Le, 2013). We hence formulate five corruption
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Table 1: Error Rates of Different Model Architectures on ModelNet40-C with Standard Training.

Density Corruptions Noise Corruptions Transformation Corruptions
Model (%) | ERcor | Occlusion LiDAR Density Inc. Density Dec. Cutout | Uniform Gaussian Impulse Upsampling Background | Rotation Shear FFD RBF Inv. RBF
PointNet 283 52.3 54.9 10.5 11.6 12.0 124 14.4 29.1 14.0 93.6 36.8 254 213 186 178
PointNet++ 23.6 54.7 66.5 16.0 10.0 10.7 204 16.4 35.1 17.2 18.6 276 134 152 164 154
DGCNN 259 59.2 81.0 14.1 17.3 154 14.6 16.6 249 19.1 53.1 19.1 121 13.1 145 140
RSCNN 262 518 68.4 16.8 13.2 13.8 24.6 18.3 46.2 20.1 18.3 292 17.0 181 192 186
PCT 255 56.6 76.7 11.8 14.3 14.5 12.1 139 39.1 174 579 18.1 115 124 13.0 126
SimpleView 272 55.5 82.2 13.7 17.2 20.1 14.5 14.2 24.6 177 46.8 307 185 17.0 179 172
CurveNet 22.7 55.1 66.0 105 153 13.9 11.7 13.2 23.7 11.8 61.0 15.8 9.8 107 114 10.6
GDANet 25.6 60.5 72.1 11.0 14.5 13.8 13.5 34.1 289 16.0 526 174 115 120 131 127
PointMLP 319 64.3 952 12.1 14.6 14.4 257 359 493 425 56.9 197 115 111 128 119
PointMLP-Elite || 33.4 64.8 93.3 14.0 18.2 18.7 21.7 31.3 46.8 36.2 81.1 199 132 129 144 138
Average 27.0 57.5 75.6 13.0 14.6 14.7 17.1 20.8 34.8 212 54.0 234 144 144 151 145

types to cover the density corruption patterns: {Occlusion, LiDAR, Local Density_Inc,
Local Density.Dec, Cutout}. Specifically, Occlusion and LiDAR both simulate oc-
clusion patterns using ray tracing on the original meshes (Zhou et al., |2018), and LiDAR addi-
tionally incorporates the vertically line-styled pattern of LiDAR point clouds (Liu et al., [2018).
Local Density_Inc and Local Density_Dec will randomly select several local clusters of
points using k-nearest neighbors (kNN) to increase and decrease their density, respectively. Simi-
larly, Cutout discards several randomly chosen local clusters of points using KNN.

2.2 NOISE CORRUPTION PATTERNS

Noise evidently exists in all real-world point cloud applications. For example, the inevitable digital
noise of scanning sensors (e.g., medical imaging) (Wolff et al., 2016) and the random reflections and
inaccuracy of LiDAR lasers (Geiger et al.,|2012) will contribute to a substantial variation of points.
Compression and decompression will potentially result in noisy point clouds as well (Cao et al.,
2019). Besides, real-time rendering in VR games is another source of noise (Bonatto et al., [2016).
We thus formulate five noise perturbations: {Uniform, Gaussian, Impulse, Upsampling,
Background}. As their names indicate, Uniform and Gaussian apply different distributional
noise to each point in a point cloud. Impulse applies deterministic perturbations to a subset of
points. Upsampling assigns new perturbation points around the existing points. Background
randomly adds new points in the bounding box space of the pristine point cloud.

2.3 TRANSFORMATION CORRUPTIONS PATTERNS

We use both linear and non-linear 3D transformations to formulate the corruptions. For the lin-
ear ones, we leverage 3D Rotation and Shear as our corruption types and exclude translation
and scale transformations since they can be easily restored by normalization (i.e., the inverse trans-
formation matrix). Rotation of point clouds is common in the real world and the robustness
against adversarial rotations has been investigated by a few studies (Zhao et al., 2020; |Shen et al.,
2021a). We here do not use aggressive rotations that might affect human perception as well, but
instead enable a milder rotation (< 15°) along zyz axes. We consider Shear on the xy plane to
represent the motion distortion in 3D point clouds (Yang et al.,[2021). We utilize free-form deforma-
tion (FFD) (Sederberg & Parryl |1986) and radial basis function (RBF)-based deformation (Forti &
Rozza,|2014)) for non-linear transformations. Such deformations are also common in VR/AR games
and point clouds from generative models (GAN) (Li et al.,|2018a; Zhou et al., 2021). Specifically, we
use multi quadratic (p(x) = V2 + r2) and inverse multi quadratic splines (¢(z) = (22 4 r2)~2)
as the representative RBFs to cover a wide range of deformation types. As a result, we in total
formulate {Rotation, Shear, FFD, RBF, Inv_RBF} as our transformation-based corruptions.

3 MODELNET40-C ROBUSTNESS BENCHMARK

Setup. ModelNet40 is the most popular dataset for benchmarking point cloud recognition perfor-
mance, containing 12,308 point clouds from 40 classes (Wu et al., 2015). Point clouds from Model-
Net40 are extracted from CAD models, rendering a perfectly clean dataset. We create ModelNet40-
C with five severity levels for each corruption type, the same as ImageNet-C. Fig. (1| illustrates
samples from ModelNet40-C with severity level four, and they clearly still preserve the semantics
of the “airplane” class. Since it is hard to qualify and quantify the corruption severity for LiDAR
and Occlusion, we instead leverage five different view angles to create their corrupted point
clouds. These designed corruptions are applied to the validation set of ModelNet40, resulting in
ModelNet40-C a 75 x larger dataset to test the corruption robustness of pre-existing models.

Metrics. We use the error rate (ER) and class-wise mean error rate (mER) as the main metrics
for ModelNet40-C benchmarking. We denote ER/, as the error rate for a classifier f on the clean

clean
dataset (i.e., ModelNet40) and ERQC as the error rate for f on corruption c with severity s. Similarly,
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Table 2: Error Rates of Architectures on ModelNet40-C with Different Data Augmentation Strategies.

Standard PointCutMix-R PointCutMix-K PointMixup RSMix PGD

Model (%) | || ERcor |ERcor | Density Noise Trans. |ERcor | Density Noise Trans.|ERco | Density Noise Trans. | ERcor | Density Noise Trans.|ERco | Density Noise Trans.
PointNet 283 [21.8] 305 180 169 [213| 268 21.8 154|254 | 283 289 190|225 | 248 273 155259 | 288 284 205
PointNet++ 236 |19.1| 281 122 17.0 |202| 263 169 173|193 | 308 143 129|233 | 270 193 237 - - - -
DGCNN 259 |17.3| 289 114 115|173 | 29.1 119 109 | 204 | 321 168 123 | 18.1 | 288 13.0 12.6 |20.7| 368 13.8 115
RSCNN 262 | 179 250 13.0 158 |21.6| 283 19.0 17.6 | 198 | 297 155 141 |21.2| 268 174 193 - - - -
PCT 255 |163| 27.1 105 112|165 | 258 126 111 |19.5| 303 167 115|173 | 250 12.0 150 |184| 293 147 111
SimpleView 272 [ 197] 312 113 165 206| 291 156 170 |21.5| 327 17.1 148|204 | 284 146 183 - - -
Average 26.1 187 285 127 148 | 196] 276 163 149 |21.0| 306 182 14.1[20.5| 268 173 174

ERf = ZE’ ERg cand ER/ = Ziil ERgc . We will release our leaderboard publicly to facilitate

s=1 cor :
future studies on robustness of point cloud learning.

4 EXPERIMENTS AND RESULTS

In this section, we elaborate our comprehensive evaluation and rigorous analysis in detail.

Setup. As mentioned in § [T} we leverage 9 representative models. These models stand for distinct
architecture designs, and have achieved good accuracy on the clean dataset. They are also well-
recognized by the 3D vision community, and have been extensively applied to complex tasks like
semantic segmentation (Nguyen & Lel[2013) and object detection (Shi et al.L[2019;2020). We adopt
the original hyper-parameter settings from the official data augmentation implementations in our
study. We only enable adversarial training for PointNet, DGCNN, and PCT since the other methods
will hinder the gradients from backward propagating to the original point cloud, making adversarial
training inapplicable.

As presented in Table|l] there is no overarching model that dominates our ModelNet40-C dataset,
unlike robustness benchmarking in 2D vision (Hendrycks & Dietterichl, 2019). Point cloud recog-
nition models have various designs and no consensus has been reached as deep learning in the 3D
space is a relatively nascent field. The model performances on ModelNet40-C are found to be in
good alignment with their design attributes. PointNet does not encode local feature. Such a de-
sign has been regarded as a main drawback of PointNet. However, we find it robust against the
variations in density. PCT achieves a much balanced result under all corruption types by adopting
self-attention modules as its backbone. CurveNet innovates advanced grouping in the graph fre-
quency domain to the strongest robustness under standard training (ER = 22.7%). To our surprise,
the latest PointMLP performs the worst on ModelNet40-C, showing its overfittng to the clean data
and poor generalization capability. Similarly, SimpleView cannot achieve better robustness under
common corruptions than other architectures, despite it high performance on clean data, suggesting
point cloud-specific designs are indeed desired.

Due to time and resource constraints, we select 6 models for data augmentation experiments. We find
that no single data augmentation can rule them all. Different augmentation methods have expertise
on distinct corruption patterns.

As Table 2] presents, PointCutMix-R performs the best on noise corruptions (ER = 12.7%), Point-
Mixup specializes the transformation corruptions (ER = 14.1%), and RSMix is especially robust
against density corruptions (ER = 26.8%). Such results also relate to the design of augmenta-
tion strategies. In details, given two point cloud samples x,,x; from class a and b, PointCutMix-
R simply merges (&) two randomly selected (©®) subsets together based on hyper-parameter A
(Taug = AOx, P (1—A)Oxp). The two subsets will overlap in the resulting point cloud @ 4,4. Each
point cloud subset can be regarded as a special noise by the other. Thus, it naturally includes noise
corruptions with mixing into data augmentations. PointMixup leverages interpolation-based mixing
that the transition between two point clouds (€qug = AZq + (1 — A)((Xq, s), Where ((xq, Tp)
finds the shortest path for every pair in x, and x;). The augmented point cloud is thus locally
smooth, which aligns with the transformation corruptions. In contrast, RSMix acts similarly with
PointCutMix-K but guarantee a rigid mixing of two partial point clouds. There will be no overlaps
and each point cloud subset is clustered and isolated in the 3D space. Such patterns correspond to
density corruptions in point cloud data.

5 CONCLUSION

To conclude, we have presented ModelNet40-C, the first comprehensive benchmark for corruption
robustness of point cloud recognition models. We have unveiled the massive performance degra-
dation on our ModelNet40-C for representative models. We also provided critical insights on how
different architecture and data augmentation designs affect model robustness on different corrup-
tions. We hope that our ModelNet40-C benchmark will benefit future research in developing robust
3D point cloud models and training strategies!
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A  MODELNET40-C

We elaborate the creation of ModelNet40-C in this section. The detailed implementation can be
found in our codebase, which is included in the supplementary materials.

Occlusion and LiDAR share similar general corruption features. We leverage five viewing angles
to construct these two corruptions on ModelNet40, as shown in Fig. |Al Specifically, we utilize ray
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tracing algorithms on the original meshed from ModelNet40 to generate the point cloud. Let the
facing direction of the object as 0° pivoting the z axis, we use 0°, 72°, 144°, 216°, and 288° as our
viewing angles, the viewing angles between the xy plane are randomly sampled from is 30° — 60°.
For LiDAR, we additionally render the generated point cloud into the vertically multi-line style to
simulate the pattern of the LiDAR sensor.

q:p q:p

AZ

\

Figure 2: llustration of Occlusion and LiDAR Corruption Generation.
For Local Density_Incand Local Density_Dec, we first sample a number of anchor points
based the severity level. We further find the kNN of the anchor points and up-sample or down-
sample them to increase and decrease their local density, respectively. Similarly, Cutout discards
the full kNN (k = 50) subsets of the anchor points to simulate the sensor limitations of LiDAR and
other scanning devices.

Gaussian and Uniform noises are sampled from Gaussian and uniform distributions with differ-
ent o and e based on the severity level. For the Background noise, we randomly sample different
numbers of points in the edge-length-2 cube that bounds the point cloud based on the severity level.
For Impulse noise, we first sample different numbers of points based on the severity level and as-
sign the maximum magnitude of perturbation /., = 0.05 to them. For the Upsampling noise, we
first choose different numbers of points based on the severity level and generate new points around
the selected anchors, bounded by ¢, = 0.05.

For Rotation and Shear, we have introduced their construction in §|Zl As mentioned, we allow
relatively small transformations since we find larger ones will affect the human perception of the
object class as well.

For deformation-based corruptions FFD, RBF, and Inv_RBF, we assign 5 control points along each
xyz axis, resulting in 125 control points in total. We choose the deformation distance based on
the severity level and randomly assign their directions in the 3D space. The deformations then are
formulated based on the interpolation functions that we choose in § 2}

We visualize three additional groups of sample point clouds from ModelNet40-C in Fig. 3] Fig. ]
and

B RELATED WORK

Adversarial & Corruption Robustness of 2D Images. Deep neural networks are known to be
vulnerable to adversarial examples and common corruptions (Bulusu et al., 2020). Hendrycks &
Dietterich| (2019); [Hendrycks et al.| (2021) developed corruption robustness benchmarking datasets
CIFAR-10/100-C, ImageNet-C, and ImageNet-R to facilitate robustness evaluations of CIFAR and
ImageNet classification models. |Michaelis et al.| (2019) extended this benchmark to object detection
models. Mintun et al.| (2021) further proposed ImageNet-C dataset that is comprised of a set of
corruptions that are perceptually dissimilar to ImageNet-C. Recently, |Sun et al.| (2021b) proposed
a comprehensive benchmarking suite CIFAR-10/100-F that contains corruptions from different re-
gions in the spectral domain. (Koh et al) [2021) presented WILDS, a curated benchmark of 10
datasets reflecting a diverse range of distribution shifts that naturally arise in real-world applica-
tions. [Hendrycks et al.| (2019); |Cubuk et al.| (2018); |Calian et al.| (2021)); Kar et al.|(2022) proposed
augmentation methods to improve the corruption robustness in 2D vision tasks. On the adversarial
robustness benchmarking front, |Carlini et al.| (2019)) discussed the methodological foundations, re-
viewed commonly accepted best practices, and suggested new methods for evaluating defenses to
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Figure 3: Visualization of Samples from ModelNet40-C - “Toliet” Class.

Rotation

Figure 4: Visualization of Samples from ModelNet40-C - “Desk” Class.

adversarial examples. [Croce et al.| (2020) proposed a standardized leaderboard called RobustBench,
which evaluates the adversarial robustness with AutoAttack (Croce & Hein}, [2020), a comprehensive
ensemble of white- and black-box attacks.

3D Point Cloud Deep Learning. Deep learning models are increasingly being proposed to process
point cloud data. Early works attempted to use 3D voxel grids for perception, which have cubic com-
plexity (Maturana & Scherer, 2015, [Wang & Posner], [2015). PointNet pioneered
to leverage shared multi-layer perceptrons and a global pooling operation to achieve permutation-
invariance and thus enable end-to-end training. further proposed PointNet++ to
hierarchically stack PointNet for multi-scale local feature encoding. PointCNN and RSCNN refac-
tor the traditional pyramid CNN to improve the local feature learning for point cloud recognition
et al|, 20180} [Liu et al, 2019b). The graph data structure is also heavily used in point cloud learn-
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Figure 5: Visualization of Samples from ModelNet40-C - “Chair” Class.

ing (Landrieu & Simonovsky}, 2018} [Shen et al., 2018). For example, DGCNN built a dynamic

graph of point cloud data for representation learning 2019). PointConv and KPConv

improve the convolution operation for point cloud learning (Wu et al., 2019} [Thomas et al. [2019).
Recent work demonstrated that ResNet (He et al., 2016) on multi-view 2D projections of point

clouds could also achieve high accuracy (Goyal et al., 2021). PointTransformer and PCT advance
Transformer (Vaswani et al., 2017) blocks into point cloud learning and achieve state-of-the-art per-
formance (Zhao et al.l 2021} |Guo et al., 202T).

Robustness Enhancements for 3D Point Cloud. Several recent efforts tackle improving the ro-
bustness of 3D point cloud learning (Sun et all [2020a). Xiang et al](2019) and [Liu et al.| (20194)
first demonstrated that point cloud recognition is vulnerable to adversarial attacks. Zhou et al.|(2019)
and |Dong et al.| (2020) proposed to leverage input randomization techniques to mitigate such vul-
nerabilities. [Sun et al.| (2020b) conducted adaptive attacks on existing defenses and analyzed the
application of adversarial training on point cloud recognition. (2020) discovered that
adversarial rotation greatly degrades the perception performance. further showed
that pre-training on self-supervised tasks enhances the adversarial robustness of point cloud recog-
nition. Recent studies presented a framework that uses the Shapley value [1988) to assess the

quality of representations learned by different point cloud recognition models (Shen et al.| 2021azb).
Recent efforts also proposed certified adversarial defenses(Liu et al.| [2021)). Taghanaki et al.| (2020)

proposed several simple corruption types to benchmark the robustness of point cloud recognition
models. However, their formulations cannot represent realistic distortions in the physical world. In
this work, we aim to present a more systematic benchmark and rigorously analyze the corruption
robustness of representative deep point cloud recognition models.
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